Effects of Fine Particles on Thermal Conductivity of Mixed Silica Sands

نویسندگان

  • Jaehun Ahn
  • Jongwon Jung
چکیده

The physical properties of granular materials (such as hydraulic, strength, and thermal properties) are largely dependent on their density (or porosity) and particle size distribution. In infrastructure design, the thermal properties of soils are now more important than in the past. However, our understanding of the thermal properties of mixed granular materials is still poor. In this study, the thermal conductivity of silica sands with different porosities and particle sizes was experimentally investigated, based on ASTM D5334-14. The thermal conductivity of granular materials is presented as a function of the porosity and proportion of fine particles. The thermal conductivity tends to be low when the porosity is high and the proportion of fine particles is low (and vice versa). When the fine particles are small enough to fill the pore body of the larger particles, the coordination number increases; thus, the thermal conductivity increases when the proportion of fine particles is high. Therefore, both the porosity and particle size distribution should be carefully considered when the thermal conductivity of mixed silica sand is evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonication Effects on Stability and Thermal Properties of Silica- Paraflu Based Nanofluids

Cooling is one of the most important challenges in industries, especially in the automotive industry. The coolant which is used in engine radiators possesses lower thermal conductivity. To enhance the thermal properties, coolant was dispersed in nano-sized particles and the fluid is called as Nanofluid. In this Study, Silica Nanoparticle was dispersed in Paraflu Engine coolant usin...

متن کامل

High Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles

Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...

متن کامل

Preparation of MCM-41 nanofluid and an investigation of Brownian movement of the nanoparticles on the nanofluid conductivity

In this investigation the silicate nano structure of MCM-41 has been used for the production of nanofluid. The particles have negligible heat conductivity and therefore by their dispersion in a base fluid like water, it is possible to study the increase of heat conductivity due to the Brownian motion effects. In this work a suitable apparatus for the measurement of heat conductivity has been bu...

متن کامل

Evaluation of uniform delivery of colloidal nano-Silica stabilizer to liquefiable silty sands

Liquefaction is one of the most important and complex topics in geotechnical earthquake engineering. In recent years, passive site stabilization method has been proposed for non-disruptive mitigation of liquefaction risk at developed sites susceptible to liquefaction using colloidal nano-silica stabilizer. In this research, 4 box models were used to investigate the ability to uniformly deliver ...

متن کامل

A numerical study on the effects of hydrogen addition levels, wall thermal conductivity and inlet velocity on methane/air pre-mixed flame in a micro reactor

In this study, the effect of the levels of hydrogen addition to methane-air premixed flame in a micro-stepped reactor has been studied numerically. In addition, the effects of mixture velocity and walls’ thermal conductivity (Kw) on the flame’s location, temperature, and species distribution in a micro reactor were calculated using a 2D numerical laminar steady code. The results showed that an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017